counter easy hit

Huawei looks set to launch a new server chip with HBM technology to challenge Xeon and Epyc; yes, that

Huawei looks set to launch a new server chip with HBM technology to challenge Xeon and Epyc; yes, that
0

  • Huawei may be adding HBM support to Kunpeng SoC
  • Clues hint at a replacement for the Kunpeng 920, launched in 2019
  • New SoC with HBM may target HPC, server market rivals

Huawei engineers have reportedly released new Linux patches to enable driver support for High Bandwidth Memory (HBM) management on the company’s ARM-based Kunpeng high-performance SoC.

The Kunpeng 920, which debuted in January 2019 as the company’s first server CPU, is a 7nm processor featuring up to 64 cores based on the Armv8.2 architecture. It supports eight DDR4 memory channels and has a thermal design power (TDP) of up to 180W. While these specifications were competitive when first introduced, things have moved on significantly since.

Introducing a new Kunpeng SoC with integrated HBM would align with industry trends as companies seek to boost memory bandwidth and performance in response to increasingly demanding workloads. It could also signal Huawei’s efforts to maintain competitiveness in the HPC and server markets dominated by Intel Xeon and AMD EPYC.

No official announcement… yet

Phoronix’s Michael Larabel notes that Huawei has not yet formally announced a new Kunpeng SoC (with or without HBM), and references to it are sparse. Kernel patches, however, have previously indicated work on integrating HBM into the platform.

The latest patches specifically address power control for HBM devices on the Kunpeng SoC, introducing the ability to power on or off HBM caches depending on workload requirements.

The patch series includes detailed descriptions of this functionality. Huawei explains that HBM offers higher bandwidth but consumes more power. The proposed drivers will allow users to manage HBM power consumption, optimizing energy use for workloads that do not require high memory bandwidth.

The patches also introduce a driver for HBM cache, enabling user-space control over this feature. By using HBM as a cache, operating systems can leverage its bandwidth benefits without needing direct awareness of the cache’s presence. When workloads are less demanding, the cache can be powered down to save energy.

Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!

While we don’t have any concrete details on future Kunpeng SoCs, integrating HBM could potentially allow them compete more effectively against other ARM-based server processors, as well as Intel’s latest Xeon and AMD EPYC offerings.

You might also like

  • US sanctions allow Huawei ‘case-by-case’ access to chip-making equipment
  • Huawei is pairing its supercharged SSD with a 60-year old technology
  • First AMD EPYC 9965 benchmarks are in and universally positive
Leave A Reply

Your email address will not be published.